Huu Kim Nguyen

(+82) 10-5929-7054 | huukim136@gmail.com | linkedin.com/in/kim-nguyen136 | https://avocado136.github.io/

INTERESTS

Deep Learning, Speech and Audio Signal Processing

Speech synthesis, voice conversion, generative models

Education

Yonsei University - top 3 universities in Korea	Seoul, Korea
M.S. in Electrical and Electronic Engineering	Sept. 2019 – Sept. 2021
• Digital Signal Processing & Artificial Intelligence (DSP&AI) Lab. (Prof. Hong-Goo Ka	ang)
• Major: Speech signal processing, Deep learning	
Hanoi University of Science and Technology	Hanoi, Vietnam
B.S. in Electronic and Telecommunication Engineering	Sept. 2013 – Aug. 2018
• Signal Processing and Radio Communication (SPARC) Lab. (Prof. Huy-Dzung Han)	
Experience	
Data Scientist	Sept. 2021 – Present
LOVO.AI	
• Develop neural speech synthesis models that fit customers' needs	
• Train transformers-based autoregressive and non-autoregressive speech generative mod	els
• Develop LLM-based text-to-speech models for both English and Korean languages	
• Develop a voice cloning framework that is realistic and human-like level.	
• Provide solutions for speaker generation from a limited dataset with limited speakers	
• Develop emotional text-to-speech models with natural prosody	
• Build voice conversion to convert speech to a target speaker's timbre	
• Improve pronunciation accuracy of BPE token-based Transformer-based TTS	\mathbf{S} models via cross attention
• Diffusion distillation for faster inference speed	
• Develop Flow Matching TTS decoder to 5x inference speed	
• Design and develop multilingual TTS	
• Participate in data collection and processing pipeline	
Graduate Researcher	Sept. 2019 – Aug. 2021
DSP&AI lab - Yonsei University	Seoul, Korea
• Research speech-related topics e.g. speech synthesis, voice conversion	
• Research solutions for speech synthesis on-device applications	
Undergraduate Research Assistant	Jan 2017 – Feb. 2019
SPARC lab - Hanoi University of Science and Technology	Hanoi, Vietnam
• Build a smart algae cultivation system based on IoT platform	
• Develop a secure remote FPGA reconfiguration method while the device is in operation	n
Projects	
Genny (former Voicelab) - https://genny.lovo.ai/	LOVO.A
Create emotional TTS models for audio content creation. Research and develop LLM-based	models for realistic voices
• Include $+30$ types of emotions and styles	
• Focus on improving natural prosody and high fidelity	
• Optimize the cost of autoregressive LLM-based models	
• Tackle the known stability issues in autoregressive TTS models: word skipping, repe	etition, babbling, etc.

Voice Cloning

Develop a voice cloning framework that is realistic and human-like level

- Make use of powerful architecture of LLMs
- Improve voice cloning capability ${\bf drastically}$ via a unique prompting method

LOVO.AI

voice Conversion	LOVO.AI
Build a fast and low-latency any-to-many voice conversion model	
• Tackle with disentanglement issue of timbre, pitch, linguistic information, energy	
• Improve model's generalization for unseen combination of timbre, pitch, linguistic inform	ation, energy
• Develop accurate pitch modelling to preserve target speaker's pitch patterns	
Development of Attribute Controllable Natural Keyword Speech Generation Method	Qualcomm Korea
Speech augmentation in preparation for automatic speech recognition	Nov. 2019 – Jun. 2020
• Research non-parallel voice conversion to synthesize speech utterances	
Real-time Neural Text-to-speech on CPU Device	Naver Corp.
Effective text-to-speech model for on-device applications	Oct. 2020 – Aug. 2021
• Design a small-sized, fast-synthesizing text-to-speech model for portable devices	
• Research non-autoregressive Transformer-based speech synthesis	
VoiceVerse NFTs project - https://www.voiceverse.com/	LOVO.AI
Create a multi-speaker text-to-speech model with 8888 unique artificial voices	
• Each voice is minted as an NFT token	

TOVO AT

• Owner of the voice token can use the accompanied text-to-speech tool

PUBLICATIONS

T7 •

 $\mathbf{\alpha}$

- Thi-Thai Yen Doan, Minh-Tri Ho, Huu-Kim Nguyen, and Huy-Dung Han. "Optimization of Spirulina sp. Cultivation using Reinforcement Learning with State Prediction based on LSTM Neural Network". In: Journal of Applied Phycology (2021).
- [2] Kihyuk Jeong, **Huu-Kim Nguyen**, and Hong-Goo Kang. "A Light and Fast Text-To-Speech Model with Spectrum and Waveform Alignment Algorithms". In: *Proc. EUSIPCO*. 2021.
- [3] Huu-Kim Nguyen, Kihyuk Jeong, and Hong-Goo Kang. "A Fast and Lightweight Speech Synthesis Model based on FastSpeech2". In: *Proc. ITC-CSCC*. 2021.
- [4] Huu-Kim Nguyen, Kihyuk Jeong, Seyun Um, Min-Jae Hwang, Eunwoo Song, and Hong-Goo Kang. "LiteTTS: A Lightweight Mel-spectrogram-free Text-to-wave Synthesizer Based on Generative Adversarial Networks". In: Proc. INTERSPEECH. 2021.

Skills

Programming Languages and Frameworks: Python, Pytorch, Latex

Developer Tools: Git, Docker, Vim

Libraries: NumPy, pandas, Matplotlib, librosa, gradio, Hydra, multiprocessing, transformers, praat, Pytorch Lightning. Languages: Vietnamese (native), English (professional working proficiency), Korean (elementary proficiency)